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Pattern synthesis from singular solutions in the Debye 
limit: helical waves and twisted toroidal scroll structures 
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Department of Mathematics, Glasgow College of Technology, Glasgow G4 OBA, Scotland 

Received 29 May 1981, in final form 9 December 1981 

Abatmct. Applying the Debye limit to a suitable superposition of singular solutions of 
the linear two-component reaction4iffusion equations in three dimensions leads to helical 
and twisted toroidal scroll waves of constant concentration. An integral representation 
of the solutions of the Helmholtz equation in toroidal coordinates establishes a connection 
between helical and toroidal waves. 

1. Introduction 

Pattern formation in physiochemical systems through the interaction of spatial diffusion 
and the local properties of the chemical reactions involved has been the subject of 
active research in recent years (Gmitro and Scriven 1966, Nicolis and Prigogine 1977, 
Winfree 1980). While the role of diffusion in such a synthesis is open to debate 
(Thones 1973), the reaction-diffusion (R-D) hypothesis has been successful in generat- 
ing a variety of testable global and local geometrical concepts in relation to possible 
patterns (Auchmuty and Nicolis 1976). 

The object of this investigation is to show that there are several features in common 
between the geometrical properties of the concentration contours implied by the 
Debye limit (Abramowitz and Stegun 1965, p 366) of the singular solutions of the 
linear R-D equations and experimentally observed patterns in Belousov-Zhabotinski- 
type (Winfree 1980, p 300) reactions. This then suggests that the class of nonlinear 
models that may be relevant to observed patterns is the one that stabilises the 
above-mentioned concentration contours. In our opinion, linear models, despite their 
well-documented defects (Tyson 1976), might contain valid information on geometrical 
aspects of concentration contours that could be usefully incorporated into nonlinear 
generalisations. The emphasis here is not on amplitudes of concentrations or the 
facility of superposition intrinsic to linear models, but on the structure of functionals 
that emerge which are candidates for describing experimentally observed concentration 
contours. 

DeSimone, Beil and Scriven (1973) (referred to hereinafter as DBS) have provided 
such a beginning by constructing a two-dimensional model in which the singular 
solutions have been taken as elementary pattern functions. They were able to obtain 
Archimedean spiral patterns in the asymptotic limit of large distances. Admittedly, 
singularity of the solution is a defect of the model. But the intriguing result is that 
the singular solution considered in the Debye limit leads to the well-known involute 
of a circle for concentration contours (see § 2). This encourages one to apply such 
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1464 J Gomatam 

considerations to three dimensions. The present analysis reveals that helical and 
twisted toroidal scroll patterns are supported by the R-D equations (2.1), and that the 
latter are linear functionals of the former in the Debye limit. 

The contribution of this investigation is threefold: 
(i) A reassessment of the DBS model in the light of the Debye limit (§ 2). 
(ii) The emergence of orthonormal helical wave (Garavaglia and Gomatam 

1975a,b) propagation in the Debye limit. An interesting feature of these helical 
waves is that orthonormal propagation is maintained only outside a singular cylinder 
whose radius is determined by the parameters of the model and an arbitrary separation 
constant (§ 3). 

(iii) (a) Formulation and perturbative solution of the problem in toroidal coordinate 
systems. The dominant mode of propagation turns out to be a twisted toroidal scroll 
wave with singularities along the central axis as well as along the core axis ( 0  4). An 
integral representation of the toroidal waves in terms of helical waves of varying pitch, 
phase and amplitude provides estimates on correction terms (appendix 3). 
(b)An exact solution for the toroidal structure (with baffle) is briefly discussed in 
appendix 2. 

2. Pattern synthesis from singular solutions in the Debye limit 

2.1. Superposition of singular solutions 

The object of this section is to establish the notation (Gmitro and Scriven 1966) and 
to outline the procedure for the superposition of linearly independent, singular 
harmonic solutions of the R-D system (DBS) 

aC/at = DV2C +AC ( 2 . 1 ~ )  

where 

C = ( z : )  D = ( D 1  O )  A=[a i i ] .  
0 D2 

(2.lb) 

The Di and aii are real constants, to be restrained as shown below in (2.5). The Ci 
are to be construed as small deviations of concentrations from a possible equilibrium 
value of the full nonlinear R-D equations. 

We look for solutions of (2.1) of the type 

Ci = P:+)F(+)(r) e-”’” + P:-)F(-)(r)eiur ( i  = 1,2)  (2.2) 

where F(+) and F(-) are ‘outgoing’ and ‘incoming’ singular solutions of the Helmholtz 
equation 

V 2 F +  k 2 F  = 0 (k real). (2.3) 

Substituting (2.2) in (2.1) and using (2.3) we obtain the eigenvector equation 

(A - k ’0 * juZ)P(*) = 0 (2.4) 
where P(*) is the column vector 
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The conditions 

k Z  = TrA/TrD 

det(A - k 2 D )  > 0 

guarantee that w is real and has the value given by 

w = +[det(A - kzD)]"2. 

Since (F')* = F- ,  we must have (P:)* =Pi,-' in order that the Ci are real. 
From (2 .4)  we obtain 

( 2 . 5 ~ )  

(2 .56 )  

(2 .5d )  

To simplify our presentation we choose 

Pt = P ;  =$A1 (2 .5e )  

a real constant. Therefore 

Cl(r, t )  = $Al[F'+)(r)e-ju' +F'-)(r)e'''"]. (2 .6 )  
The expression for Cz(r, t )  is obtained from (2 .2)  with the help of (2.5d, e ) .  

2.2. The Debye limit illustrated in two dimensions- 

DBS have shown that a suitable combination of regular and singular solutions of ( 2 . 1 ~ )  
in polar coordinates leads asymptotically to Archimedean spiral patterns for phases 
of concentrations. In this section we show that an application of the Debye limit to 
Bessel functions leads to the involute of a circle for the phase contours, thereby 
providing a precise relationship between the radius of the involute circle, the wavenum- 
ber k and the order of the Bessel functions. 

In two dimensions with 

we obtain 

C1 =AIIHt ' (kr ) l  cos[S,(kr)+mQ - u t ]  ( m  integer) (2 .8)  
where the notation (Abramowitz and Stegun 1965, p 358) is as follows: 

I H ~ ) ( / v ) ~  = [ ~ f n ( k r ) +  ~2, (kr ) ] l / '  

S,,,(kr) =tan-'( Y,/J,). 

In the Debye limit (Abramowitz and Stegun 1965, p 366) 

kr, m + large k r > m  

we obtain 

(2 .9)  

(2 .10 )  

(2 .11)  

(2.12) 
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where terms O( l /m)  have been omitted in the limit for Hm(kr ) .  The contours 

8: (kr )  + mcp - ot = constant 

are involute m spirals unwinding from a circle of radius 

(2.13) 

ro = m / k  = mh/21r (2.14) 

where A is the wavelength measured along the tangent 

cp -cos-'( 7) m l k  = constant. (2.15) 

It is interesting to point out that the orthonormal curvilinear system (2.13) and (2.15) 
is a degenerate case of the more general triply orthonormal system of helical surfaces 
(Garavaglia and Gomatam 1975a,b) we have considered elsewhere in a different 
context. We will return to this point in the next section. 

An objection that has to be met is the relevance of the Debye limit (2.11) to 
experimentally observed single spirals, m = 1. It is known that the Debye limit is true 
even for finite values of m, and this has been emphasised by Watson (1966, p 224). 
In fact, as an estimate (appendix 1) we have 

where 
kr = m sec p (0 < p < f7r). (2.16) 

Numerical calculations show that the relative error associated with (2.16) when 

In the next two sections we use the Debye limit to analyse the three-dimensional 
m = 1 is less than 1% for kr> 5 (see table A l ,  appendix 1). 

patterns implied by the singular solutions (2.2). 

3. Linear R-D systems in three dimensions: helical patterns 

It is a straightforward matter to consider any well-established coordinate system 
with its separable (or partially separable) singular solutions for real k and examine it 
in the Debye limit. One usually finds that the linear dimension exhibits a transition 
value, parametrised by k and the separation constants associated with other coordin- 
ates of the system. An application of these ideas to cylindrical and toroidal coordinate 
systems reveals many interesting features of the possible patterns. Firstly we discuss 
the problem in cylindrical coordinates and show how helical patterns can be constructed 
from singular solutions. 

The system (2.1) is trivially solved when 

The solution C1 is 

c1 = $A ,[J', (41) + Y', (qr)]'12 COS[S, (qr )  + mcp - p z  - ot] ( 3 . 2 ~ )  

q = ( k 2  - P ~ ) " ~  (IP I < lk I). (3.26) 
where 
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The choice p = 0 represents cylindrical scroll waves. In general we have a helical 
surface 

(3.3) 

for phase surfaces, the pitch of the helical surface being 2 4 p .  A wavefront is usually 
one of the surfaces of a triple orthonormal system of surfaces; one would certainly 
expect it to be so in a linear system (2.1) with constant coefficients. It is not obvious 
that (3.3) could be embedded in a triple orthonormal system (Eisenhart 1960) of 
surfaces. (The problem is a trivial one for two-dimensional curvilinear systems.) 
However, in the Debye limit we obtain, for a given t, 

&[(k2-p2)1 ’2r ]+m(p  -pr  -ut = constant 

6E[(k2-p2)1’2r]+mcp - p z  =constant. (3.4) 

We have shown elsewhere (Garavaglia and Gomatam 1975a, b) that the helical surface 
(3.4) is one of the surfaces of a triple orthonormal system of surfaces outside a singular 
cylinder of radius 

r o =  m / ( k 2 - p 2 ) 1 ’ 2 .  (3.5) 
Thus the R-D system (2.1)-(2.3) permits orthonormal propagation of helical wavefronts 
in the Debye limit. The propagation vector is along the lines of curvature, the curve 
of intersection of tangential half-planes to the singular cylinder (3.5) and a helical 
surface with its sense opposite to that of (3.4). Note that z = constant sections of (3.4) 
are involute spirals. There is very little experimental information available on helical 
patterns, even though a few observed patterns in test tubes could have been interpreted 
either as slant bands or helical patterns. The restriction (3.26) is necessary for helical 
waves. 

Since p is arbitrary, it is natural to look into the possibility of superposing waves 
such as ( 3 . 2 ~ ) .  For a class of weight functions and contours such a superposition 
leads to toroidal scrolls with twists. 

4. Toroidal scrolls with twists 

The occurrence of toroidal scroll patterns has been inferred from experiments with 
millipore stacks soaked in Belousov-Zhabotinski (B-Z) reagents (Winfree 1973). 
Recently, they have been confirmed in situ by Burgess and Welsh (1981) in experi- 
ments with suitably modified B-z reagents. In this section we show that a twisted 
scroll ring with a singularity on the hole axis emerges as a surface of constant 
concentration. 

We tackle this problem in two stages. Firstly we consider the singular solutions of 
the R-D system (2.1) in a suitably constructed toroidal coordinate system. Twisted 
scroll ring surfaces obtain in the limit of large values of Ro, the major radius. Next 
we show that these could be obtained by a suitable superposition of the helical waves 
(3,.2a), considered in the Debye limit. From this, we obtain estimates on corrections 
to the dominant twisted scroll ring pattern. The method also elucidates the nature 
of the singularity located along the hole axis. 

While the present investigation was well under way, we came across a wealth of 
literature on electromagnetic wave propagation (Lewin 1974, Lewin et a1 1977) in 
toroidal structures, the primary concern of these investigations being to study the 
phenomenon of radiation losses due to curvature in the structure. such as a curved 
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dielectric fibre. When dealing with such problems a number of well-tested physical 
considerations and boundary conditions on the surfaces of waveguides dictate the 
choice of solutions. In our case the chief aim is to investigate the Debye-asymptotic 
geometry of wave patterns concealed in the singular solutions of the R-D equations 
in toroidal coordinates. However, the methods outlined in the references stated above 
could be applied to our problem with suitable modifications. 

Figure 1. Toroidal coordinate system. 

The toroidal coordinate system (Lewin et af 1977) is shown in figure 1. The system 

r = R o + p  COS $ (4 . la)  

z = - p  sin $. (4.1 b )  

The half-planes cp = constant are common to both systems. It is easily seen that the 
toroidal surfaces p = c1 intersect the half-planes cp = constant in a circle whose centre 
is at r = Ro. As we vary c1 we obtain a series of concentric circles for c1  < Ro and 
segments of concentric circles for c1 > Ro. This coordinate system should be contrasted 
with the classical toroidal systems (Lebedev 1965) which include a system of eccentric 
circles. 

The Helmholtz equation (2 .3 )  takes the following form in the toroidal system: 

( p ,  4, c p )  is related to the cylindrical coordinates (r ,  z ,  c p )  by 

(4 .2 )  

where we recall that r = R o + p  cos $. An immediate separation of G(p, $) in the cp 
coordinate is possible if we make the assumption 

F = G(p, $) eivo (" + 0) (4 .3)  
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The presence of the factor l l r  does not allow any further separation of G ( p , + ) .  
(However, when v = 5, the system (4.4) has the solutions 

G = - H ( l *  1 2, 
r 1 / 2  I ( k p )  e””’. 

These solutions, relevant to a toroidal structure with a baffle located at cp = cpl, are 
derived in appendix 2.) One possible approach is to use perturbation methods applied 
to the parameter VIRo. But a more instructive way is to construct integral representa- 
tions for solutions of (4.4), using the known exact solutions in cylindrical coordinates. 

Assuming that Ro >> (p  cos $1, we expand l / r 2  to give 

1 1 2p cos+ _---- 
r 2 - R :  R i  e 

(4.5) 

Then (4.4) reduces to 

Here G A  represents the solutions under assumption (4.5). We are interested in 
propagating solutions in the local coordinate system (p, +); hence we stipulate that 

k 2 -  v 2 / R :  >O.  (4.7) 

A further assumption 

kRo> 1 (4.8) 

enables us to neglect the terms containing. l / R o  in (4.6). In the local coordinate 
system ( p ,  +) we have 

where 
2 1/2 k o = ( k 2 - v 2 / R O )  . 

Hence the solution (4.3) now is approximated by 
F:,:)) = Hi1.2) ( k o P )  e*iVcP. 

(4.9) 

(4.10) 

(4.11) 

The phase contours (2.2) are now determined by 
c1 = p ? ) ~ ; l )  (koP)  ei(vcp+l+-wf) + p : - ) ~ ; 2 )  ( k o p )  e - i ( u ~ + I l l - w r )  (4.12) 

(4.13) = A1(HI1) (kop)l  cos[&(kop) + vcp + I+ - ut]. 

A consideration of the Debye limit 

kop, I + large kop > 1 

with the implied restriction Ip cos +( -K Ro results in the constant phase surfaces 

Consider the surface (4.14) at a particular instant of time t = 7 .  
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Case 1 = 1, v = 0. The equation (4.14) represents a scroll surface, the scroll being 
wound on a torus of major radius Ro and minor radius l/ko (core radius). The 
intersection of the half-plane cp = Q and the scroll surface is an involute 1-spiral 
8F ( k o p )  + II, = constant + oi. This spiral emerges from the point (p,  c p )  = (I/&”, I& Q )  
where &= constant+wi. The involute spiral on the plane cp = Q + T is the mirror 
image of the spiral on the plane cp = Q, the mirror coinciding with the planes cp = Q +;T 
and cp = Q +;T. This double spiral concentration contour has been observed in a 
number of experiments (Winfree 1980, p 313). 

Case 1 = 1, v = 1. The intersection of the half-plane cp = Q and (4.14) is again an 
involute 1-spiral 87 ( k o p )  + II, = constant + 07 - Q, but now emerging from the point 
(l/ko, &, Q) on the circumference of the core where 6 =constant + 07 - Q. But the 
intersection of the half-plane cp = Q + 7r with the surface (4.14) is an involute 1-spiral 
emerging from (l/ko, 6- T,  Q + T ) .  Thus the locus of points of emergence of the 
involute spirals is a helix drawn on the surface of the torus. The once-twisted toroidal 
scroll surface could be visualised as follows: Imagine a string wound around a torus 
of minor radius l/ko in a helix, so that the string retraces the helical path several 
times. Now unwind the string by holding one end, making sure that it is kept taut all 
the time. The surface generated by the unwinding string is a toroidal scroll with one 
twist! Twisted toroidal scroll surfaces have been suggested as possible candidates for 
concentration contours (Winfree 1980, pp 254-6). 

The singularity at r = 0 is not evident in (4.13). This is not surprising since (4.12) 
is a local description of the solution, with Ip cos Ro. An answer to this 
question emerges when we consider the method of integral representation (Lewin et 
a1 1977) of the solution. We start with a superposition of solutions in cylindrical 
coordinates 

(4.15) 

The problem now is to choose the weight function Q : ( p )  and the contour W l ( p )  
suitably to produce the solution (4.11) in the local coordinate system. Of course e*iuc 
drops out of this consideration. We first consider the Hankel function H I ” [ ( k 2  - 
p 2 ) ” 2 r ]  in the Debye limit, then seek the Taylor expansion of the Debye-asymptotic 
form around r = Ro for small values of Ip cos $1. It turns out that terms of order 
p cos $ in the exponent are enough to yield the solution (4.11) when W l ( p )  and 
Q: ( p )  are suitably chosen. The correction terms are of the order ( p  cos $)/Ro. The 
details of the calculations and the concepts involved are sufficiently different from 
electromagnetic problems to be presented here in separate appendices. The main 
result is (see appendix 3) 

H l ” [ ( k o  cos u ) r ]  
HI” [ ( k o  cos u)Ro] 

exp{i[l(u - &r) + vrp - koz sin U - w t ] }  ‘I du(P:“ 
W i ( u )  

p( - )  HL2) [ (ko  cos u ) r ]  exp{-i[l(u - i ~ )  + vrp - koz sin U - ot]}) 
HL2) [(k” cos u)Ro] 1 

- 

~ p ~ ) ~ ~ l )  (kop)  ei(w+fJL’+p(-) Hj2) ( k o P )  e - i ( v o + l J )  (4.16) 

for Ip cos $ 1  << r where correction terms of the order ( p  cos II,)/Ro are neglected in the 
integral as shown in appendix 3. The contour W’, (U) is related to the contour W l  (U) 
(Sommerfeld 1949) for integral representation of HI1)(v) (see figure 2) by the 
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-n I 

v plane 

n 

17051 Figure 2. The contour W ;  (U) for integral representation. 

transformation U = U + t,b as shown in appendix 3. The integral is easily recognised to 
be a superposition of helical waves of varying pitches, phases and amplitudes. The 
singularity at r = 0 enters through H ~ ’ . Z ’ [ ( k 2  - p 2 ) ” 2 r ] .  

The case Y = 0 is discussed in appendix 3. Since there is no transition radius, a 
straightforward asymptotic limit of Hb’’2’ [(kZ - p 2 ) ” 2 r ]  generates the right solution 
in the local coordinate system. 

5. Discussion 

The role of singular solutions had been well understood in the context of classical 
boundary value problems (Sommerfeld 1949). Various perturbative procedures, such 
as eikonal methods, have provided important physical insights into the effect of 
potential barriers or material boundaries on the solution. The Debye limit is an 
offshoot of such procedures. In the absence of such boundaries or given the intriguing 
behaviour of B-z wavefronts at such boundaries (Winfree 1980, p 300), the Debye 
limit gives quantitative information on the self-organisation of the system into at least 
two domains with distinct properties. 
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Perhaps i t  is this information on phase curves that is the unifying feature of linear 
and nonlinear models. The h-w type systems (Kopell and Howard 1981) in higher 
dimensions would provide a natural framework for incorporating this unifying feature. 

The emergence of helical wave patterns raises questions which have experimental 
implications. How does one produce and maintain these patterns, and by what methods 
does one observe and characterise various planar projections of these helical waves? 
An equally intriguing question is why in many observations to date the toroidal scroll 
is favoured by the chemical system. It is important to answer these questions, especially 
in view of the connection we have established between the helical waves and twisted 
toroidal scroll structures. 

An insight into the pattern formation resulting in extended structures like toroidal 
scrolls might be gained from applying bifurcation (Nicolis and Prigogine 1977, p 178) 
techniques to the exact solutions we have outlined in appendix 2. The ultimate 
objective of this analysis would be to relate the major radius Ro of the toroidal 
structure to the internal parameters of the system. These ideas are currently under 
investigation. 
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Appendix 1. The Debye limit (Abramowitz and Stegun 1965 p 366, Watson 1966, 
P 244) 

The Hankel function in the Debye limit kr > U, kr and U large, is given by 

where 

81 ~ o t ~ p + 4 6 2 ~ 0 t ~ ~ + 3 8 5 ~ 0 t ~ ~ + ~  
1152u2 

L - l -  

+o($). 3 cot p + 5  cot3 p 
M -  

24 u 
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For v large 

M 
L 24v 

3 cot p + 5  cot3 p 
tan-' - - tan-'( [ 

81 cot2 p + 462 cot4 p + 385 cot6 p 
1 1 5 2 ~ '  

x [ l +  

3 cot 0 + 5  cot3 p 
24 v 

81 cot2 p +462 cot4 p +385 cot6 p i1 + 1 1 5 2 ~ ~  
5 

where the argument of tan-' { } is small. Hence 

M 3co tp+5Cot3p+0  
tan-' -- 

L 24 v 

Watson (1966, pp 224, 513, 514) emphasises that many of the results derived for 
large v happen to be true for functions of all positive orders. Numerical calculations 
indicate that for values as low as v = 1 , 2  the relative error 

is less than 1% in the domain kr, < kr < 00 (see table Al ) .  

Table Al .  Comparison between &(kr )  and 6: (kr )  for U = 1,2. 

V kr M k r )  6!?(kr) 

1 5.000 2.718 2.744 
6.000 3.706 3.727 
8.000 5.690 5.706 

10.000 7.681 7.694 

2 6.200 2.574 2.598 
7.200 3.532 3.553 
8.200 4.501 4.518 
9.200 5.476 5.491 

Appendix 2. Exact solution for toroidal coordinates (v = f f) 

The transformation 

reduces (4.3) to 
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Choosing = 0 and U = *&, we obtain the Bessel equation 

a2u iau 1 a 2 ~ + k 2 U = 0 ,  
2+--+77 
aP P aP P a@ 

Appendix 3. The derivation of equation (4.16) 

Consider the Debye expansion (Abramowitz and Stegun 1965, p 366) of H:”(q) for 

H:” (7) - egv.‘n’ (A3.1) 

ltl l>u: 

where 

3 cot p + 5  cot3 /3 
+In[ 1- i  24 U +0(31 (A3.2) 

and 

q = U sec p (0 < p < $T). 

The Taylor expansion of g,(q) about 7 for small E leads to 

H:” (7 + E )  - H?’ (7) e ir ”(tan B ) / q  

3 ~ i  coset' p(cot p + 5  cot3 p> 2 

. (A3.3) 

Setting q = qRo, E = qp cos (I we obtain 

X[1-2Ro(72-u2) E??2 +Eo(;)]* (A3.4) 

Therefore, to order p cos (I, the dominant contribution comes from the first term on 
the right-hand side of (A3.4). 

Thus 

With 

p = ko sin U q = (kz - &: sin’ = ko cos u 

we obtain 
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For a general Q r ’ ( p )  there is a cut in the Y plane at U = *&r corresponding to q = 0. 
Rather than taking the reader through tedious transformations on an initial contour, 
we will display the final orientation of the contour (figure 2). The cuts at U = *&r 
will pose no problem as they will disappear when an appropriate weight function Q?) 
is chosen. 

Let 

~ ~ ) ( p ) ~ ~ ” ( q ~ ~ ) k ~ c o s  u = eirfu-fw). 

Then 

d U  ei&opcos(u-+)+i/(u - f ~ )  

d u  ei&opcosu+i/(o-$n) 

I 
- n. l ” I  w;(u) 

eiw 
F(+)  = - 

7~ W i ( u )  

e ”* +‘”* - _  

e i I +  +i  YWH( 1 ) 
r (kop). - - 

and the same W ;  ( U )  or -1 - i / ( u - i w )  The choice QL-)(p)H12) (qRo)ko cos U = -T 
equivalently WI ( U )  leads to 

e 

F(-) -illL-iucp Hj2) (kop).  = e  

The case Y = 0 (toroidal scroll surfaces) is dealt with by considering, for large 7, 

and 
1 i/872+0(1/773) 

HL” (7 + E )  + Hb” (7) exp E i - - + [ ( 277 1-i/8t7+O(1/v2) 

Setting 7 = (k2-p2)1/2RO=qR0, E = qp cos (I, in the integral representation we deter- 
mine the weight functions Q F ’ ( p )  to be 

e i l ( u - t ~ )  

~TZ&” ( 4 ~ 0 )  COS U 
Q 6 “ ( p )  = 

where as before p = k sin U and the contour is Wl (U) .  A suitable combination of 
singular solutions would then lead to constant-concentration toroidal 1 scrolls 

[[ b’ - ::ikk)iI”’ -cos-’ (33 + 14 - wt = constant 

in the Debye limit. The restriction Ip cos $ 1 “  RO is still in force. 
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